Перевод: с английского на все языки

со всех языков на английский

applied technology laboratory

  • 1 applied technology laboratory

    English-Russian dictionary of planing, cross-planing and slotting machines > applied technology laboratory

  • 2 applied technology laboratory

    Универсальный англо-русский словарь > applied technology laboratory

  • 3 ATL

    1) Компьютерная техника: Automatic Tape Library
    4) Шутливое выражение: All Terrain Lady
    5) Метеорология: Air To Land
    6) Юридический термин: Above Tha Law
    7) Сокращение: Advanced Technology Launcher, Aero Tec Laboratories Inc. (USA), Armt Tactical Laser, Microsoft Active Template Library
    10) Онкология: Adult T-cell Leukemia
    11) Транспорт: Adjustable Throttle Limiter
    12) Реклама: Above-The-Line ("над чертой"), "над чертой" (рекламные мероприятия, воздействующие на мотивации потребителя при принятии решения о покупке опосредованно, то есть при помощи носителя, - масс-медиа, наружная реклама и т.д.)
    13) Сетевые технологии: Automated Tape Library
    14) Маркетология: (Above the Line) над чертой (затраты только на основные способы прямой рекламы с помощью таких средств массовой информации как: телевидение, радио, пресса, наружная реклама и реклама в кинотеатрах)
    15) Майкрософт: библиотека ATL
    16) Программное обеспечение: Activex Template Library
    17) СМС: Along These Lines

    Универсальный англо-русский словарь > ATL

  • 4 ATL

    ATL, advanced technology laboratory
    ————————
    ATL, air transport liaison
    ————————
    ATL, applied technology laboratory
    ————————
    ATL, artificial transmission line
    ————————
    ATL, Atlantic
    Атлантический океан; атлантический
    ————————
    ATL, awaiting trial

    English-Russian dictionary of planing, cross-planing and slotting machines > ATL

  • 5 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 6 Forrester, Jay Wright

    [br]
    b. 14 July 1918 Anselmo, Nebraska, USA
    [br]
    American electrical engineer and management expert who invented the magnetic-core random access memory used in most early digital computers.
    [br]
    Born on a cattle ranch, Forrester obtained a BSc in electrical engineering at the University of Nebraska in 1939 and his MSc at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, where he remained to teach and carry out research. Becoming interested in computing, he established the Digital Computer Laboratory at MIT in 1945 and became involved in the construction of Whirlwind I, an early general-purpose computer completed in March 1951 and used for flight-simulation by the US Army Air Force. Finding the linear memories then available for storing data a major limiting factor in the speed at which computers were able to operate, he developed a three-dimensional store based on the binary switching of the state of small magnetic cores that could be addressed and switched by a matrix of wires carrying pulses of current. The machine used parallel synchronous fixed-point computing, with fifteen binary digits and a plus sign, i.e. 16 bits in all, and contained 5,000 vacuum tubes, eleven semiconductors and a 2 MHz clock for the arithmetic logic unit. It occupied a two-storey building and consumed 150kW of electricity. From his experience with the development and use of computers, he came to realize their great potential for the simulation and modelling of real situations and hence for the solution of a variety of management problems, using data communications and the technique now known as interactive graphics. His later career was therefore in this field, first at the MIT Lincoln Laboratory in Lexington, Massachusetts (1951) and subsequently (from 1956) as Professor at the Sloan School of Management at the Massachusetts Institute of Technology.
    [br]
    Principal Honours and Distinctions
    National Academy of Engineering 1967. George Washington University Inventor of the Year 1968. Danish Academy of Science Valdemar Poulsen Gold Medal 1969. Systems, Man and Cybernetics Society Award for Outstanding Accomplishments 1972. Computer Society Pioneer Award 1972. Institution of Electrical Engineers Medal of Honour 1972. National Inventors Hall of Fame 1979. Magnetics Society Information Storage Award 1988. Honorary DEng Nebraska 1954, Newark College of Engineering 1971, Notre Dame University 1974. Honorary DSc Boston 1969, Union College 1973. Honorary DPolSci Mannheim University, Germany. Honorary DHumLett, State University of New York 1988.
    Bibliography
    1951, "Data storage in three dimensions using magnetic cores", Journal of Applied Physics 20: 44 (his first description of the core store).
    Publications on management include: 1961, Industrial Dynamics, Cambridge, Mass.: MIT Press; 1968, Principles of Systems, 1971, Urban Dynamics, 1980, with A.A.Legasto \& J.M.Lyneis, System Dynamics, North Holland. 1975, Collected Papers, Cambridge, Mass.: MIT.
    Further Reading
    K.C.Redmond \& T.M.Smith, Project Whirlwind, the History of a Pioneer Computer (provides details of the Whirlwind computer).
    H.H.Goldstine, 1993, The Computer from Pascal to von Neumann, Princeton University Press (for more general background to the development of computers).
    Serrell et al., 1962, "Evolution of computing machines", Proceedings of the Institute of
    Radio Engineers 1,047.
    M.R.Williams, 1975, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Forrester, Jay Wright

  • 7 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 8 Varian, Russell Harrison

    [br]
    b. 24 April 1898 Washington, DC, USA
    d. 28 July 1959 Juneau, Alaska, USA
    [br]
    American physicist who, with his brother Sigurd Varian and others, developed the klystron.
    [br]
    After attending schools in Palo Alto and Halcyon, Russell Varian went to Stanford University, gaining his BA in 1925 and his MA in 1927 despite illness and being dyslexic. His family being in need of financial help, he first worked for six months for Bush Electric in San Francisco and then for an oil company in Texas, returning to San Francisco in 1930 to join Farnsworth's Television Laboratory. After a move to Philadelphia, in 1933 the laboratory closed and Russell tried to take up a PhD course at Stanford but was rejected, so he trained as a teacher. However, although he did some teaching at Stanford it was not to be his career, for in 1935 he joined his brothers Sigurd and Eric in the setting up of a home laboratory.
    There, with William Hansen, a former colleague of Russell's at Stanford, they worked on the development of microwave oscillators, based on some of the latter's ideas. By 1937 they had made sufficient progress on an electron velocity-bunching tube, which they called the klystron, to obtain an agreement with the university to provide laboratory facilities in return for a share of any proceeds. By August that year they were able to produce continuous power at a wavelength of 13 cm. Clearly needing greater resources to develop and manufacture the tube, and with a possible war looming, a deal was struck with the Sperry Gyroscope Company to finance the work, which was transferred to the East Coast.
    In 1946, after the death of his first wife, Russell returned to Palo Alto, and in 1948 the brothers and Hansen founded Varian Associates to make microwave tubes for transmitters and linear accelerators and nuclear magnetic-resonance detectors. Subsequent research also resulted in the development of a satellite-borne magnetometer for measuring the earth's magnetic field.
    [br]
    Principal Honours and Distinctions
    Honorary DSc Brooklyn Polytechnic Institute 1943. Franklin Institute Medal.
    Bibliography
    1939, with S.F.Varian, "High frequency oscillator and amplifier", Journal of Applied Physics 10:321 (describes the klystron).
    Further Reading
    J.R.Pierce, 1962, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers 979 (provides background to development of the klystron).
    D.Varian, 1983, The Inventor and the Pilot (biographies of the brothers).
    KF

    Biographical history of technology > Varian, Russell Harrison

  • 9 Maxwell, James Clerk

    [br]
    b. 13 June 1831 Edinburgh, Scotland
    d. 5 November 1879 Cambridge, England
    [br]
    Scottish physicist who formulated the unified theory of electromagnetism, the kinetic theory of gases and a theory of colour.
    [br]
    Maxwell attended school at the Edinburgh Academy and at the age of 16 went on to study at Edinburgh University. In 1850 he entered Trinity College, Cambridge, where he graduated four years later as Second Wrangler with the award of the Smith's Prize. Two years later he was appointed Professor at Marischal College, Aberdeen, where he married the Principal's daughter. In 1860 he moved to King's College London, but on the death of his father five years later, Maxwell returned to the family home in Scotland, where he continued his researches as far as the life of a gentleman farmer allowed. This rural existence was interrupted in 1874 when he was persuaded to accept the chair of Cavendish Professor of Experimental Physics at Cambridge. Unfortunately, in 1879 he contracted the cancer that brought his brilliant career to an untimely end. While at Cambridge, Maxwell founded the Cavendish Laboratory for research in physics. A succession of distinguished physicists headed the laboratory, making it one of the world's great centres for notable discoveries in physics.
    During the mid-1850s, Maxwell worked towards a theory to explain electrical and magnetic phenomena in mathematical terms, culminating in 1864 with the formulation of the fundamental equations of electromagnetism (Maxwell's equations). These equations also described the propagation of light, for he had shown that light consists of transverse electromagnetic waves in a hypothetical medium, the "ether". This great synthesis of theories uniting a wide range of phenomena is worthy to set beside those of Sir Isaac Newton and Einstein. Like all such syntheses, it led on to further discoveries. Maxwell himself had suggested that light represented only a small part of the spectrum of electromagnetic waves, and in 1888 Hertz confirmed the discovery of another small part of the spectrum, radio waves, with momentous implications for the development of telecommunication technology. Maxwell contributed to the kinetic theory of gases, which by then were viewed as consisting of a mass of randomly moving molecules colliding with each other and with the walls of the containing vessel. From 1869 Maxwell applied statistical methods to describe the molecular motion in mathematical terms. This led to a greater understanding of the behaviour of gases, with important consequences for the chemical industry.
    Of more direct technological application was Maxwell's work on colour vision, begun in 1849, showing that all colours could be derived from the three primary colours, red, yellow and blue. This enabled him in 1861 to produce the first colour photograph, of a tartan. Maxwell's discoveries about colour vision were quickly taken up and led to the development of colour printing and photography.
    [br]
    Bibliography
    Most of his technical papers are reprinted in The Scientific Papers of J.Clerk Maxwell, 1890, ed. W.D.Niven, Cambridge, 2 vols; reprinted 1952, New York.
    Maxwell published several books, including Theory of Heat, 1870, London (1894, 11th edn, with notes by Lord Rayleigh) and Theory of Electricity and Magnetism, 1873, Oxford (1891, ed. J.J.Thomson, 3rd edn).
    Further Reading
    L.Campbell and W.Garnett, 1882, The Life of James Clerk Maxwell, London (the standard biography).
    J.J.Thomson (ed.), 1931, James Clerk Maxwell 1831–1931, Cambridge. J.G.Crowther, 1932, British Scientists of the Nineteenth Century, London.
    LRD

    Biographical history of technology > Maxwell, James Clerk

  • 10 Coolidge, William David

    SUBJECT AREA: Electricity, Metallurgy
    [br]
    b. 23 October 1873 Hudson, Massachusetts, USA
    d. 3 February 1975 New York, USA
    [br]
    American physicist and metallurgist who invented a method of producing ductile tungsten wire for electric lamps.
    [br]
    Coolidge obtained his BS from the Massachusetts Institute of Technology (MIT) in 1896, and his PhD (physics) from the University of Leipzig in 1899. He was appointed Assistant Professor of Physics at MIT in 1904, and in 1905 he joined the staff of the General Electric Company's research laboratory at Schenectady. In 1905 Schenectady was trying to make tungsten-filament lamps to counter the competition of the tantalum-filament lamps then being produced by their German rival Siemens. The first tungsten lamps made by Just and Hanaman in Vienna in 1904 had been too fragile for general use. Coolidge and his life-long collaborator, Colin G. Fink, succeeded in 1910 by hot-working directly dense sintered tungsten compacts into wire. This success was the result of a flash of insight by Coolidge, who first perceived that fully recrystallized tungsten wire was always brittle and that only partially work-hardened wire retained a measure of ductility. This grasped, a process was developed which induced ductility into the wire by hot-working at temperatures below those required for full recrystallization, so that an elongated fibrous grain structure was progressively developed. Sintered tungsten ingots were swaged to bar at temperatures around 1,500°C and at the end of the process ductile tungsten filament wire was drawn through diamond dies around 550°C. This process allowed General Electric to dominate the world lamp market. Tungsten lamps consumed only one-third the energy of carbon lamps, and for the first time the cost of electric lighting was reduced to that of gas. Between 1911 and 1914, manufacturing licences for the General Electric patents had been granted for most of the developed work. The validity of the General Electric monopoly was bitterly contested, though in all the litigation that followed, Coolidge's fibering principle was upheld. Commercial arrangements between General Electric and European producers such as Siemens led to the name "Osram" being commonly applied to any lamp with a drawn tungsten filament. In 1910 Coolidge patented the use of thoria as a particular additive that greatly improved the high-temperature strength of tungsten filaments. From this development sprang the technique of "dispersion strengthening", still being widely used in the development of high-temperature alloys in the 1990s. In 1913 Coolidge introduced the first controllable hot-cathode X-ray tube, which had a tungsten target and operated in vacuo rather than in a gaseous atmosphere. With this equipment, medical radiography could for the first time be safely practised on a routine basis. During the First World War, Coolidge developed portable X-ray units for use in field hospitals, and between the First and Second World Wars he introduced between 1 and 2 million X-ray machines for cancer treatment and for industrial radiography. He became Director of the Schenectady laboratory in 1932, and from 1940 until 1944 he was Vice-President and Director of Research. After retirement he was retained as an X-ray consultant, and in this capacity he attended the Bikini atom bomb trials in 1946. Throughout the Second World War he was a member of the National Defence Research Committee.
    [br]
    Bibliography
    1965, "The development of ductile tungsten", Sorby Centennial Symposium on the History of Metallurgy, AIME Metallurgy Society Conference, Vol. 27, ed. Cyril Stanley Smith, Gordon and Breach, pp. 443–9.
    Further Reading
    D.J.Jones and A.Prince, 1985, "Tungsten and high density alloys", Journal of the Historical Metallurgy Society 19(1):72–84.
    ASD

    Biographical history of technology > Coolidge, William David

  • 11 Nobel, Immanuel

    [br]
    b. 1801 Gävle, Sweden
    d. 3 September 1872 Stockholm, Sweden
    [br]
    Swedish inventor and industrialist, particularly noted for his work on mines and explosives.
    [br]
    The son of a barber-surgeon who deserted his family to serve in the Swedish army, Nobel showed little interest in academic pursuits as a child and was sent to sea at the age of 16, but jumped ship in Egypt and was eventually employed as an architect by the pasha. Returning to Sweden, he won a scholarship to the Stockholm School of Architecture, where he studied from 1821 to 1825 and was awarded a number of prizes. His interest then leaned towards mechanical matters and he transferred to the Stockholm School of Engineering. Designs for linen-finishing machines won him a prize there, and he also patented a means of transforming rotary into reciprocating movement. He then entered the real-estate business and was successful until a fire in 1833 destroyed his house and everything he owned. By this time he had married and had two sons, with a third, Alfred (of Nobel Prize fame; see Alfred Nobel), on the way. Moving to more modest quarters on the outskirts of Stockholm, Immanuel resumed his inventions, concentrating largely on India rubber, which he applied to surgical instruments and military equipment, including a rubber knapsack.
    It was talk of plans to construct a canal at Suez that first excited his interest in explosives. He saw them as a means of making mining more efficient and began to experiment in his backyard. However, this made him unpopular with his neighbours, and the city authorities ordered him to cease his investigations. By this time he was deeply in debt and in 1837 moved to Finland, leaving his family in Stockholm. He hoped to interest the Russians in land and sea mines and, after some four years, succeeded in obtaining financial backing from the Ministry of War, enabling him to set up a foundry and arms factory in St Petersburg and to bring his family over. By 1850 he was clear of debt in Sweden and had begun to acquire a high reputation as an inventor and industrialist. His invention of the horned contact mine was to be the basic pattern of the sea mine for almost the next 100 years, but he also created and manufactured a central-heating system based on hot-water pipes. His three sons, Ludwig, Robert and Alfred, had now joined him in his business, but even so the outbreak of war with Britain and France in the Crimea placed severe pressures on him. The Russians looked to him to convert their navy from sail to steam, even though he had no experience in naval propulsion, but the aftermath of the Crimean War brought financial ruin once more to Immanuel. Amongst the reforms brought in by Tsar Alexander II was a reliance on imports to equip the armed forces, so all domestic arms contracts were abruptly cancelled, including those being undertaken by Nobel. Unable to raise money from the banks, Immanuel was forced to declare himself bankrupt and leave Russia for his native Sweden. Nobel then reverted to his study of explosives, particularly of how to adapt the then highly unstable nitroglycerine, which had first been developed by Ascanio Sobrero in 1847, for blasting and mining. Nobel believed that this could be done by mixing it with gunpowder, but could not establish the right proportions. His son Alfred pursued the matter semi-independently and eventually evolved the principle of the primary charge (and through it created the blasting cap), having taken out a patent for a nitroglycerine product in his own name; the eventual result of this was called dynamite. Father and son eventually fell out over Alfred's independent line, but worse was to follow. In September 1864 Immanuel's youngest son, Oscar, then studying chemistry at Uppsala University, was killed in an explosion in Alfred's laboratory: Immanuel suffered a stroke, but this only temporarily incapacitated him, and he continued to put forward new ideas. These included making timber a more flexible material through gluing crossed veneers under pressure and bending waste timber under steam, a concept which eventually came to fruition in the form of plywood.
    In 1868 Immanuel and Alfred were jointly awarded the prestigious Letterstedt Prize for their work on explosives, but Alfred never for-gave his father for retaining the medal without offering it to him.
    [br]
    Principal Honours and Distinctions
    Imperial Gold Medal (Russia) 1853. Swedish Academy of Science Letterstedt Prize (jointly with son Alfred) 1868.
    Bibliography
    Immanuel Nobel produced a short handwritten account of his early life 1813–37, which is now in the possession of one of his descendants. He also had published three short books during the last decade of his life— Cheap Defence of the Country's Roads (on land mines), Cheap Defence of the Archipelagos (on sea mines), and Proposal for the Country's Defence (1871)—as well as his pamphlet (1870) on making wood a more physically flexible product.
    Further Reading
    No biographies of Immanuel Nobel exist, but his life is detailed in a number of books on his son Alfred.
    CM

    Biographical history of technology > Nobel, Immanuel

  • 12 Bunsen, Robert Wilhelm

    SUBJECT AREA: Chemical technology
    [br]
    b. 31 March 1811 Göttingen, Germany
    d. 16 August 1899 Heidelberg, Germany
    [br]
    German chemist, pioneer of chemical spectroscopy.
    [br]
    Bunsen's father was Librarian and Professor of Linguistics at Göttingen University and Bunsen himself studied chemistry there. Obtaining his doctorate at the age of only 19, he travelled widely, meeting some of the leading chemists of the day and visiting many engineering works. On his return he held various academic posts, finally as Professor of Chemistry at Heidelberg in 1852, a post he held until his retirement in 1889.
    During 1837–41 Bunsen studied a series of compounds shown to contain the cacodyl (CH3)2As-group or radical. The elucidation of the structure of these compounds gave support to the radical theory in organic chemistry and earned him fame, but it also cost him the sight of an eye and other ill effects resulting from these dangerous and evil-smelling substances. With the chemist Gustav Robert Kirchhoff (1824–87), Bunsen pioneered the use of spectroscopy in chemical analysis from 1859, and with its aid he discovered the elements caesium and rubidium. He developed the Bunsen cell, a zinc-carbon primary cell, with which he isolated a number of alkali and other metals by electrodeposition from solution or electrolysis of fused chlorides.
    Bunsen's main work was in chemical analysis, in the course of which he devised some important laboratory equipment, such as a filter pump. The celebrated Bunsen gas burner was probably devised by his technician Peter Desdega. During 1838–44 Bunsen applied his methods of gas analysis to the study of the gases produced by blast furnaces for the production of cast iron. He demonstrated that no less than 80 per cent of the heat was lost during smelting, and that valuable gaseous by-products, such as ammonia, were also lost. Lyon Playfair in England was working along similar lines, and in 1848 the two men issued a paper, "On the gases evolved from iron furnaces", to draw attention to these drawbacks.
    [br]
    Bibliography
    1904, Bunsen's collected papers were published in 3 vols, Leipzig.
    Further Reading
    G.Lockemann, 1949, Robert Wilhelm Bunsen: Lebensbild eines deutschen Forschers, Stuttgart.
    T.Curtin, 1961, biog. account, in E.Farber (ed.), Great Chemists, New York, pp. 575–81. Henry E.Roscoe, 1900, "Bunsen memorial lecture, 29th March 1900", Journal of the
    Chemical Society 77:511–54.
    LRD

    Biographical history of technology > Bunsen, Robert Wilhelm

  • 13 Sobrero, Ascanio

    [br]
    b. 12 October 1812 Cassale, Monteferrato, Italy
    d. 26 May 1888 Turin, Italy
    [br]
    Italian chemist, inventor of nitroglycerine.
    [br]
    Sobrero initially studied medicine, qualifying as both a physician and surgeon, and then went on to study chemistry in Turin, Paris and Giessen. In 1847 he created nitroglycerine by slowly adding glycerine to a mixture of nitric and sulphuric acids. The explosive injured both him and a number of others in the laboratory, and he was so horrified by its power and its potential effect on warfare that he refused to exploit his discovery; its introduction into general use thus had to wait for Immanuel and Alfred Nobel. In 1849 Sobrero was appointed Professor of Applied Chemistry at the Technical Institute, Turin, and he later became Professor of Pure Chemistry as well. He retired in 1882.
    [br]
    Bibliography
    He was the author of numerous scientific papers reflecting his wide-ranging interests in chemistry.
    CM

    Biographical history of technology > Sobrero, Ascanio

  • 14 inductive current

    1. индукционный ток
    2. индуктивный ток

     

    индуктивный ток

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    индукционный ток

    [Интент]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup. The system now in place in the factory can solve complicated Maxwell equations in a matter of milliseconds! High-precision electronics measure signals with a high degree of accuracy and within a time stability frame of picoseconds! A successful system depended on understanding the effects of induced currents in thin metal strips, and this was acquired through extensive laboratory work.

    Данная технология, основанная на физике электромагнитных полей, была искусно применена в сфере производства, и теперь установленная на фабрике система может решать сложные уравнения Максвелла в считанные миллисекунды! Прецизионная электроника измеряет сигналы с высокой точностью и обеспечивает стабильность по времени в несколько пикосекунд! Успешная работа системы опирается на глубокое понимание характера индукционных токов в тонких металлических пластинах, которое достигнуто в результате кропотливых лабораторных исследований.

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > inductive current

  • 15 induced current

    1. наведенный ток
    2. индукционный ток

     

    индукционный ток

    [Интент]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup. The system now in place in the factory can solve complicated Maxwell equations in a matter of milliseconds! High-precision electronics measure signals with a high degree of accuracy and within a time stability frame of picoseconds! A successful system depended on understanding the effects of induced currents in thin metal strips, and this was acquired through extensive laboratory work.

    Данная технология, основанная на физике электромагнитных полей, была искусно применена в сфере производства, и теперь установленная на фабрике система может решать сложные уравнения Максвелла в считанные миллисекунды! Прецизионная электроника измеряет сигналы с высокой точностью и обеспечивает стабильность по времени в несколько пикосекунд! Успешная работа системы опирается на глубокое понимание характера индукционных токов в тонких металлических пластинах, которое достигнуто в результате кропотливых лабораторных исследований.

    Тематики

    • электротехника, основные понятия

    EN

     

    наведенный ток
    Ток, возникающий в отключенных и заземленных линиях в результате емкостного и индуктивного взаимодействия с соседними линиями, находящимися под напряжением
    [ ГОСТ Р 52726-2007]

    Тематики

    • высоковольтный аппарат, оборудование...

    EN

    Англо-русский словарь нормативно-технической терминологии > induced current

  • 16 induction current

    1. экстраток размыкания
    2. индукционный ток

     

    индукционный ток

    [Интент]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Though fundamentally based on the physics of electromagnetism, the existing technology had to be cleverly manipulated so it could be applied in an industrial setup. The system now in place in the factory can solve complicated Maxwell equations in a matter of milliseconds! High-precision electronics measure signals with a high degree of accuracy and within a time stability frame of picoseconds! A successful system depended on understanding the effects of induced currents in thin metal strips, and this was acquired through extensive laboratory work.

    Данная технология, основанная на физике электромагнитных полей, была искусно применена в сфере производства, и теперь установленная на фабрике система может решать сложные уравнения Максвелла в считанные миллисекунды! Прецизионная электроника измеряет сигналы с высокой точностью и обеспечивает стабильность по времени в несколько пикосекунд! Успешная работа системы опирается на глубокое понимание характера индукционных токов в тонких металлических пластинах, которое достигнуто в результате кропотливых лабораторных исследований.

    Тематики

    • электротехника, основные понятия

    EN

     

    экстраток размыкания

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > induction current

См. также в других словарях:

  • Applied Physics Laboratory — The Johns Hopkins University Applied Physics Laboratory (APL), located in Laurel, Maryland, is a not for profit, university affiliated research center employing 4,150 people. APL is primarily a defense contractor. It serves as a technical… …   Wikipedia

  • Applied Physics Laboratory Ice Station — The Applied Physics Laboratory Ice Station 2007 (APLIS07) is an U.S.A. and Japanese laboratory dedicated to the study of global climate change, located about 300km south of the Arctic Circle, Alaska on the West Ridge of the University of Alaska… …   Wikipedia

  • National Energy Technology Laboratory — The National Energy Technology Laboratory (NETL) is a science, technology, and energy laboratory owned and operated by the U.S. Department of Energy (DOE). As part of DOE s national laboratory system, NETL supports DOE s mission to advance the… …   Wikipedia

  • Network Applied Communication Laboratory — Ltd. is an open source systems integrator located in Shimane Prefecture, Japan. It specializes in systems consulting and the development of web sites and open source software. It is an employer of Yukihiro Matsumoto, who is the creator of the… …   Wikipedia

  • Technology in Science Fiction — has helped create many common topics found in Science Fiction today. There have been authors who have taken innovations and have elaborated and created what they thought future technology would be and how it would be used. Today, new technology… …   Wikipedia

  • Applied physics — redirects here. For other uses, see Applied physics (disambiguation) Applied physics is a general term for physics which is intended for a particular technological or practical use. Applied is distinguished from pure by a subtle combination of… …   Wikipedia

  • Technology education — is a study of technology, which provides an opportunity for students to learn about the processes and knowledge related to technology. As a study, it covers the human ability to shape and change the physical world to meet needs, by manipulating… …   Wikipedia

  • technology, history of — Introduction       the development over time of systematic techniques for making and doing things. The term technology, a combination of the Greek technē, “art, craft,” with logos, “word, speech,” meant in Greece a discourse on the arts, both… …   Universalium

  • Laboratory glassware — Three beakers, a conical flask, a graduated cylinder and a volumetric flask …   Wikipedia

  • Laboratory for Interactive Learning Technologies — The Laboratory for Interactive Learning Technologies (LILT), a research group in the Department of Information and Computer Sciences (ICS, [http://www.ics.hawaii.edu/] ) of the University of Hawaii at Manoa, pursues a diverse portfolio of… …   Wikipedia

  • applied psychology — Branch of psychology concerned with solving practical problems of human behaviour by using the findings and methods of psychological science. Intelligence testing, legal problems, industrial efficiency, motivation, and delinquency were among the… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»